1. Murase, Y., Nakanishi, H., Tsuji, G., Sunami, T., Ichihashi, N., 2018. In Vitro Evolution of Unmodified 16S rRNA for Simple Ribosome Reconstitution. ACS Synth. Biol. 7, 576?583.
  2. Furubayashi, T., Ichihashi, N., 2018. Sustainability of a Compartmentalized Host-Parasite Replicator System under Periodic Washout-Mixing Cycles. Life 8, 3.
  3. Ueda, K., Nakajima, T., Yoshikawa, K., Toya, Y., Matsuda, F., Shimizu, H., 2018. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803. J. Biosci. Bioeng. 126, 38?43.
  4. Tokuyama, K., Toya, Y., Horinouchi, T., Furusawa, C., Matsuda, F., Shimizu, H., 2018. Application of adaptive laboratory evolution to overcome a flux limitation in an Escherichia coli production strain. Biotechnol. Bioeng. 115, 1542?1551.
  5. Nagai, H., Masuda, A., Toya, Y., Matsuda, F., Shimizu, H., 2018. Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis. Metab. Eng. 47, 1?9.
  6. Narazaki, Y., Nomura, Y., Morita, K., Shimizu, H., Matsuda, F., 2018. Expression of Saccharomyces cerevisiae cDNAs to enhance the growth of non-ethanol-producing S. cerevisiae strains lacking pyruvate decarboxylases. J. Biosci. Bioeng. 126, 317?321.
  7. Araki, C., Okahashi, N., Maeda, K., Shimizu, H., Matsuda, F., 2018. Mass Spectrometry-Based Method to Study Inhibitor-Induced Metabolic Redirection in the Central Metabolism of Cancer Cells 7, 1?9.
  8. Tokumaru, Y., Uebayashi, K., Toyoshima, M., Osanai, T., Matsuda, F., Shimizu, H., 2018. Comparative Targeted Proteomics of the Central Metabolism and Photosystems in SigE mutant strains of synechocystis sp. PCC 6803. Molecules 23.
  9. Tsuji, G., Sunami, T., Ichihashi, N., 2018. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars. J. Biosci. Bioeng. xx, 6?11.
  10. Hayakawa, K., Matsuda, F., Shimizu, H., 2018. 13C-metabolic flux analysis of ethanol-assimilating Saccharomyces cerevisiae for S-adenosyl-l-methionine production. Microb. Cell Fact. 17, 1?13.
  11. Uebayashi, K., Shimizu, H., Matsuda, F., 2018. Comparative analysis of fermentation and enzyme expression profiles among industrial Saccharomyces cerevisiae strains. Proteomics 7071?7081.
  12. Ogawa, K., Yoshikawa, K., Matsuda, F., Toya, Y., Shimizu, H., 2018. Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions. J. Biosci. Bioeng. xx, 1?7.
  13. Ishii, J., Morita, K., Ida, K., Kato, H., Kinoshita, S., Hataya, S., Shimizu, H., Kondo, A., Matsuda, F., 2018. A pyruvate carbon flux tugging strategy for increasing 2,3-butanediol production and reducing ethanol subgeneration in the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels 11.
  14. Ohnishi, M., Anegawa, A., Sugiyama, Y., Harada, K., Oikawa, A., Nakayama, Y., Matsuda, F., Nakamura, Y., Sasaki, R., Shichijo, C., Hatcher, P.G., Fukaki, H., Kanaya, S., Aoki, K., Yamazaki, M., Fukusaki, E., Saito, K., Mimura, T., 2018. Molecular components of arabidopsis intact vacuoles clarified with metabolomic and proteomic analyses. Plant Cell Physiol. 59, 1353?1362.
  15. Yoshiyama, T., Ichii, T., Yomo, T., Ichihashi, N., 2018. Automated in vitro evolution of a translation-coupled RNA replication system in a droplet flow reactor. Sci. Rep. 8, 1?8.
  16. Mizuuchi, R., Ichihashi, N., 2018. Sustainable replication and coevolution of cooperative RNAs in an artificial cell-like system. Nat. Ecol. Evol. 1.
  17. Komori, T., Shibai, A., Saito, H., Akeno, Y., Germond, A., Horinouchi, T., Furusawa, C., Tsuru, S., 2018. Enhancement of K-strategy evolution in histidine utilization using a container with compartments. Genes to Cells.
  18. Sakatani, Y., Yomo, T., Ichihashi, N., 2018. Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination. Sci. Rep. 8, 13089.
  19. Okahashi, N., Maeda, K., Kawana, S., Iida, J., Shimizu, H., Matsuda, F., 2018. Sugar phosphate analysis with baseline separation and soft ionization by gas chromatography-negative chemical ionization-mass spectrometry improves flux estimation of bidirectional reactions in cancer cells. Metab. Eng.